Computational River Dynamics

Computational River Dynamics by Weiming Wu
Date Released

Out Of Print

Other Titles by Weiming Wu

Comprehensive text on the fundamentals of modeling flow and sediment transport in rivers treating both physical principles and numerical methods for various degrees of complexity. Includes 1-D, 2-D (both depth- and width-averaged) and 3-D models, as well as the integration and coupling of these models. Contains a broad selection of numerical methods for open-channel flows, such as the SIMPLE(C) algorithms on staggered and non-staggered grids, the projection method, and the stream function and vorticity method. The state-of-the-art in sediment transport modeling approaches is described, such as non-equilibrium transport models, non-uniform total-load transport models, and semi-coupled and coupled procedures for flow and sediment calculations. Sediment transport theory is discussed and many newly-developed, non-uniform sediment transport formulae are presented. The many worked examples illustrate various conditions, such as reservoir sedimentation; channel erosion due to dam construction; channel widening and meandering; local scour around in-stream hydraulic structures; vegetation effects on channel morphodynamic processes; cohesive sediment transport; dam-break fluvial processes and contaminant transport. Recommended as a reference guide for river and hydraulic engineers and as a course text for teaching sediment transport modeling, computational free-surface flow, and computational river dynamics to senior students.
Publication Date:
07 / 01 / 2008

You might also like