Free Delivery on orders over $25*

      • All Products
      • Paperback
      • Hardcover
      • eBook
      • Audiobook

    Strengthening Mechanisms in Crystal Plasticity

    By: Ali Argon

    Date Released

    Instant Download

    The strengthening of metals by a variety of means has been of interest over much of history. However, the elucidation of the actual mechanisms involved in the processes of alloying and work hardening, and the related processes of metals as a scientific pursuit, has become possible only through the parallel developments in dislocation theory and in definitive experimental tools of electron microscopy and X-ray diffraction. The important developments over the pastseveral decades in the mechanistic understanding of the often complex processes of interaction of dislocations with each other, with solute atoms and with precipitates during plastic flow have largely remained scattered in the professional literature. This has made it difficult for students andprofessionals to have ready access to this subject as a whole. While there are some excellent reviews of certain aspects of the subject, there is presently no single comprehensive coverage available of the central mechanisms and their modelling. The present book on Strengthening Mechanisms in Crystal Plasticity provides such a coverage in a generally transparent and readily understandable form. It is intended as an advanced text for graduate students in materials science and mechanical engineering. The central processes of strengthening that are presented are modeled by dislocation mechanics in detail and the results are compared extensively with the best available experimental information. The form of the coverage is intended toinspire students or professional practitioners in the field to develop their own models of similar or related phenomena and, finally, engage in more advanced computational simulations, guided by the book.

    You might also like

    Accepted Payments
    QBD Proudly Supports

    Need help? Call us on (07) 3291 7444