Auto-Segmentation for Radiation Oncology

Auto-Segmentation for Radiation Oncology by Unknown


Authors
Unknown
ISBN
9780367336004
Published
Binding
Hardcover
Pages
256
Dimensions
178 x 254mm

This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations).

This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use.

Features:




Up-to-date with the latest technologies in the field



Edited by leading authorities in the area, with chapter contributions from subject area specialists



All approaches presented in this book are validated using a standard benchmark dataset established by the Thoracic Auto-segmentation Challenge held as an event of the 2017 Annual Meeting of American Association of Physicists in Medicine
Father's Day Catalogue 2025 x Book Frenxy
186.14
RRP: $218.99
15% off RRP


This product is unable to be ordered online. Please check in-store availability.
Instore Price: $218.99
Enter your Postcode or Suburb to view availability and delivery times.

You might also like


RRP refers to the Recommended Retail Price as set out by the original publisher at time of release.
The RRP set by overseas publishers may vary to those set by local publishers due to exchange rates and shipping costs.
Due to our competitive pricing, we may have not sold all products at their original RRP.